Une petite technique pour la multiplication!!

Les-tablesBon cette technique a le mérite de ne pas être connue. Elle permet de simplifier grandement l’apprentissage des tables! Delphine Maury nous fait découvrir cette nouvelle technique qui s’applique à toutes les tables supérieures à 5.

Moi qui ne connaissais que celle avec la table de 9, je me dis que celle-là, elle est plutôt cool!

Je vous laisse juge!

Alors comment comprendre cette technique.

Et bien nous allons la démontrer :

Soit deux nombres a et b. Alors on ne lève les doigts que de la différence entre chaque nombre et 5. Ces doigts valent 10. Le reste des doigts couchés doivent être multipliés entre eux.

On a donc, en supposant que les nombres a et b sont tous les deux supérieurs à 5 :

 A= (a-5) \times 10 + (b-5) \times 10 + (5-(a-5)) \times (5-(b-5))

On simplifie :

A= (a-5) \times 10 + (b-5) \times 10 + (10-a) \times (10-b)

On développe :

A= 10a-50 + 10b-50 + 100-10a-10b+ab

On simplifie

A=ab

donc la technique marche.

Bon à l’inverse de ce qu’elle dit, il ne faut pas connaître les tables jusqu’à  5 \times 5 mais jusqu’aux tables de 5 tout court.

Voili voilou!!!! 🙂

 

Vous avez aimé cet article ? Alors partagez-le avec vos amis en cliquant sur les boutons ci-dessous :

Twitter Facebook Google Plus email
Licence Creative Commons

Un commentaire

Rejoignez la conversation

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

*

code