
Voilà, nous ( moi et mon frangin ) y pensions souvent et les vacances aidant un peu, on en a profité pour faire notre premier tournage à deux.
Ce problème reprend le concept d’une énigme bien connue que l’on a élargie.
C’est la première vidéo, début d’une série que nous nous sommes promis de faire, la bien nommée :
« Les problèmes DUDU«
Bien entendu, on prendra notre temps pour les autres épisodes.
Cette vidéo est sous licence creative common BY-SA.
Musique de Löhstana David sous licence Creative Commons (usage commercial sur demande)
La série complète sera disponible ici
Code pour intégrer la vidéo à vos articles :<iframe allowfullscreen="true" style="border:none;width:480px;height:480px" src="https://mathix.org/video/problemes_ouverts/integrateur/index.php?url=http://mathix.org/video/problemes_ouverts/PB_DUDU/PBDUDU1.mp4" />
Ah ah j’aime beaucoup le style…
Vivement la réponse au problème (y’aura une réponse en vidéo ??)
Et surtout vivement la suite !
On attend la suite avec impatience !
A quand la réponse!
(J’ai édité le commentaire en cachant les réponses car le problème sera donné à mes élèves…. A-D)
je pense que Durand (à moins que ce ne soit Durant 😉 a raison, pour remplir l’échiquier il faut résoudre au moins trois problèmes principaux:
– l’encombrement: en utilisant uniquement des pièces de 1c, la totalité des pièces de l’échiquier rempli permettrait de couvrir une surface équivalent à #### fois la surface de la terre (ordre de grandeur). En admettant qu’on puisse empiler 4 colonnes de pièces par cases, la hauteur de la dernière case équivaudrait à une hauteur de plus de ####### d’années-lumières.
Même si on optimise en autorisant des pièces de valeur faciale raisonnable (mettons 100€) et de même taille que les pièces de 1c, la surface équivalente est d’environ ######km2 soit à peu près la surface de la France, et la hauteur de la dernière colonne d’environ ##### années-lumières.
– le fric: l’échiquier rempli correspond à environ ####### ans de PIB mondial (indice 2008). Difficile d’imaginer remplir l’échiquier avec son argent (ou celui de son frère).
– le temps: admettons qu’on ait l’espace et le fric, il faut aussi arriver au bout du remplissage de l’échiquier. Dans le cas le plus favorable d’une pièce de 100€ toutes les secondes, il faudrait tout de même compter ####### d’années pour arriver au bout de l’exercice.
et on n’a pas encore abordé les problèmes d’équilibre, d’échafaudage, d’outillages divers, d’approvisionnement en métaux, etc… Je ne sais pas pour vous, mais ça ressemble à une impossibilité physique plus que mathématique…
J’adooore… le concept, la musique, pour le fond je laisse la place aux pro. A très vite pour la suite.
Bonjour
Ma professeure de Mathématique nous à donner ce problème à résoudre.
Dommage qu’il n’y ai pas de vidéo avec les réponses aux 3 questions !!
Bonjour,
Je viens de découvrir cette vidéo … 6 ans plus tard .
J’aime beaucoup la présentation, je connaissais cette énigme avec des grains de riz.
Cependant je n’ai jamais pensé à la proposer en cours, et étant encore débutant, je n’ai pas le recul nécessaire pour juger du niveau. Pouvez vous me dire pour quel niveau vous le proposez ? A vue de nez je pensais le proposer à des 4/3 e mais je n’en suis pas sûr.
Merci d’avance !
Luc M.
Bonjour.
C’était prévu pour le niveau 4eme et 3eme donc vous êtes dans le vrai! 🙂
j’ai vu un commentaire précédent supposant que la hauteur de la derniere colonne serait de plusieurs années lumieres. J’ai refait le calcul, pour moi si les pieces font 1mm d’epaisseur, ca fait à peine 1 AL… ( ok c’est déjà pas mal !)
J’ai bon ou c’est lui ?