Nous avons un cône dans lequel nous avons « creusé un cône », il faut donc calculer le volume du grand cône et soustraire le volume du petit cône.

$$V_{grand} = \frac{6 \times 6 \times \pi \times 10}{3} = 120 \,\pi$$

$$V_{petit} = \frac{6 \times 6 \times \pi \times 4}{3} = 48 \pi$$

$$V = V_{grand} - V_{petit} = 120 \pi - 48 \pi = 72 \pi \approx 226,19 cm^3 \approx 226 cm^3$$

83p355

On va calculer le volume de la piscine

 $V_{cvlindre} = 3,5 \times 3,5 \times \pi \times 1,5 \approx 57,72676 m^3$

$$V_{cube} = 1,2 \times 1,2 \times 1,2 = 1,728 m^3$$

$$V_{eau} = V_{cylindre} - V_{cube} = 57,72676 - 1,728 = 56,01396501 \, m^3$$

Il faut convertir en L.

56,01396501m³

56,01396501m3=56 013,965 01 dm3

kilomètre cube	hectomètre cube	décamètre cube	mètre cube	décimètre cube	centimètre cube	millimètre cube
km³	hm³	dam³	m³	dm³	cm³	mm³
			56	013	965	01

▼virgule visible

 $V_{eau} = 56013,965 \, dm^3 = 56013,965 \, L \approx 56013,97 L$