40p207

C'est une section de pyramide parallèle à la base. La pyramide SA'B'C' est donc une réduction de la pyramide SABCD.

On a donc un situation de proportionnalité.

Pyramide SABC	SA=4	AB=2,1 (=BC)
Pyramide SA'B'C'	SA'=3,2	B'C'

On peut utiliser le coefficient de proportionnalité (qui est le coefficient de réduction) $\frac{3,2}{4}$ = 0,8 B'C'= 2,1×0,8=1,68

42p207

a)

Grand cône	Rayon = 24
Petit cône	Rayon 4

Le rapport de réduction est donné par $\frac{4}{24} = \frac{1}{6}$ ($\frac{longueur réduit e}{longueur i nitial e}$)

b)
$$Aire_{base} = 24^{2} \times \Pi = 576 \Pi$$

$$Volume = \frac{Aire_{base} \times 36}{3} = 6912 \Pi \text{ dm}$$

c)
$$Aire_{base} = \left(\frac{24 \times 1}{6}\right)^2 \times \Pi = 16 \times \Pi \text{ dm}$$

$$Volume = \frac{(16 \times \Pi) \times 36 \times \frac{1}{6}}{3} = 32 \times \Pi \text{ dm}$$

43p408

a)
$$Volume = \frac{(6^2 \times 7.5)}{3} = 90 \text{ cm}^3$$

b)

Pyramide SABCD	SO = 7,5	AB = 6
Pyramide SMNOP	SI = 2,5	MN

Le rapport de réduction est $\frac{1}{3}$ (calcul : $2,5 \div 7,5$)

MN=6×
$$\frac{1}{3}$$
=2
Volume'= $\frac{(2\times2\times2,5)}{3}$ = $\frac{10}{3}$ cm³

$$volume' = volume \times \frac{1}{27}$$
 (on obtient $\frac{10}{3} \div 90$)

GROSSE DÉCOUVERTE QU'ON AURAIT DÛ VOIR EN CLASSE

Si les longueurs sont multipliées par $\frac{1}{3}$

les aires sont alors multipliées par $\frac{1}{9}$ d'où $\frac{1}{3^2}$ les volumes sont alors multipliés par $\frac{1}{27}$ d'où $\frac{1}{3^3}$