
FICHE PROGRAMME DE CALCULS

Exercice 1

<u>Indiquer l'expression que l'on obtient.</u>

Exercice 2

Trouver les opérations permettant de passer de x à l'expression indiquée

x 3x-5

x -4x

x -5x-6

X

$$5(4x+6)$$

X

$$-5\times(-6x+2)$$

Exercice 3

Trouver les opérations permettant de passer de l'expression indiquée à $\ x$

$$3x - 5$$

$$6x+2$$

$$10(3x+6)$$

$$-14x-6$$

FICHE RÉSOLUTION

Exercice 1

Résoudre les équations suivantes :

$$3x = 2$$

$$5+x=17$$

$$5+x=17$$
 $3x+6=1$ $\frac{x}{3}=2$

$$\frac{x}{3} = 2$$

Exercice 2

Résoudre les équations suivantes :

$$3x+2=15$$

$$5x - 7 = 15$$

$$18+3x=13$$

$$5x-7=15$$
 $18+3x=13$ $17x-2=-5$

$$3-2x=10$$

$$3-2x=10$$
 $17x+3=4$

$$20x-2=6$$

Trouver le chemin jusqu'à l'arrivée en ne passant que par les solutions de la case équation précédente.

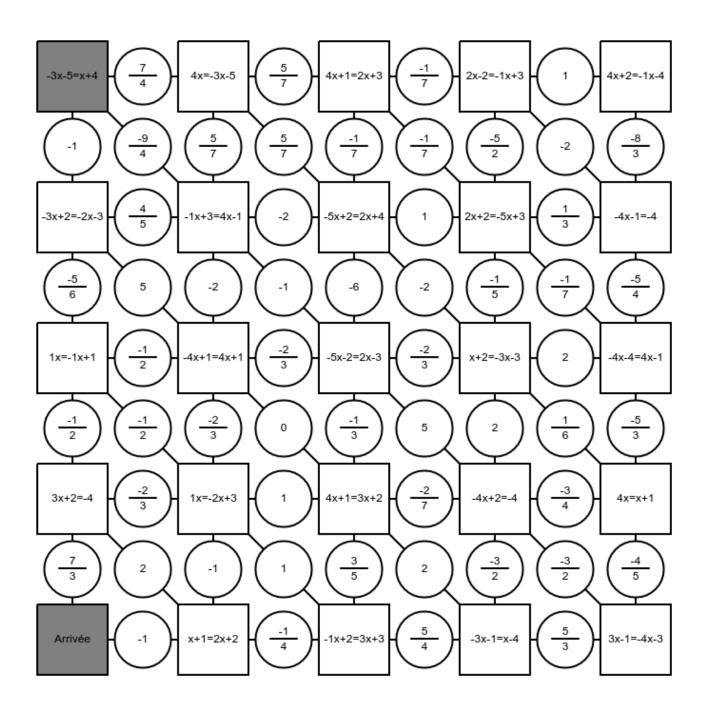
2x=1 (-2/3)	x-2=-1	-5x+3=3	4x+2=-3	1 3 -1x+1=-1
$\frac{1}{3}$ $\frac{1}{2}$	3 3	$\frac{6}{5}$	$\left(\frac{-7}{4}\right)$	7/4
-3x-2=1	3x=3	$3x=-5$ $8 \over 5$) 2x+1=-1	3 4x=-5
3 1	-1 1	$\frac{5}{2}$	-2	-2
Arrivée -3	-1x+1=-4	2x+2=0 1	-2x-1=-3	2 -1x-5=0
$\frac{1}{2}$	$\frac{-5}{4}$ 5		$\left(\frac{4}{5}\right)$	-2
-2x+4=-4	-4x-2=0	4x-1=2	2x+3=1	-1x-1=4
$\frac{3}{5}$	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{-1}{2}$ $\frac{3}{4}$	2	$\frac{1}{2}$ $\frac{3}{4}$
-5x-2=-5	3x+4=2 2	x+2=4	-3x-2=3	1 3 x-2=4

Exercice 3

Résoudre les équations suivantes :

$$3x+2=17x-5$$
 $6x-7=4x+1$ $10x+8=4x-4$

$$6x - 7 = 4x + 1$$


$$10x + 8 = 4x - 4$$

$$3x-2=x+5$$

$$3x+7=x-1$$

$$3x-2=x+5$$
 $3x+7=x-1$ $8-x=4x-4$

<u>Trouver le chemin jusqu'à l'arrivée en ne passant que par les solutions de la case équation précédente.</u>

FICHE Problèmes

(exercice sesamaths)

Exercice 1

Alice et Bertrand affichent un même nombre sur chacune de leur calculatrice.

- Alice multiplie le nombre affiché par 3 puis ajoute 4 au résultat obtenu.
- Bertrand multiplie le nombre affiché par 2 puis ajoute 7 au résultat obtenu.

À la fin, ils s'aperçoivent que leurs calculatrices affichent exactement le même résultat. Quel nombre ont-ils affiché au départ ?

Exercice 3

Hervé a obtenu lors des trois premiers devoirs les notes suivantes : 8 ; 5 et 14.

Quelle note minimale doit-il obtenir au dernier devoir pour avoir la moyenne ce trimestre ?

Exercice 5

La grande Halle d'Auvergne peut accueillir 8 500 spectateurs. Lors d'un concert, toutes les places debout à $25 \in$ et toutes les places assises à $44 \in$ ont été vendues. Le montant de la recette était ce soir-là de 312 725 \in .

Quel était le nombre de spectateurs debout ?

Exercice 7

Une bouteille de forme cylindrique contient 2 litres d'eau. Le rayon de sa base mesure 10 cm. Détermine la hauteur de la bouteille. Arrondis ton résultat au dixième de centimètre.

Exercice 8

On transforme un carré en un rectangle en ajoutant 7 cm à la longueur d'un de ses côtés et en retranchant 2 cm à la longueur d'un autre.

- **a.** Quelles doivent être les dimensions du carré initial pour que le double de son périmètre soit égal au périmètre du rectangle ?
- **b.** Quelles doivent être les dimensions du carré initial pour que son aire et celle du rectangle soient égales ?

Exercice 2

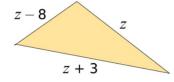
Joey pense à un nombre. Il lui ajoute 11, multiplie le tout par 3 et au résultat obtenu il retranche 3. Joey obtient 51. Quel est ce nombre de départ ?

Exercice 4

J'ai 180 € de plus que toi.

Si je te donnais 41 € alors j'aurais deux fois plus d'argent que toi.

Combien avons-nous chacun?


Exercice 6

Le ciné-club d'un village propose deux tarifs : Tarif A: une carte d'adhésion pour l'année coûtant 21 euros, puis 1,5 euros par séance ; Tarif B: 5 euros par séance sans carte d'adhésion.

- **a.** Calculer, pour chaque tarif, le prix payé pour 8 séances.
- **b.** On appelle x le nombre de séances. Exprimer en fonction de x le prix payé avec le tarif A, puis avec le tarif B.
- **c.** Quel est le nombre de séances pour lequel le tarif A est égal au tarif B ?


Exercice 9

Trouve la valeur de z sachant que le périmètre du triangle ci-contre vaut 61. Les mesures sont dans la même unité.

Exercice 10

Soient le losange et le triangle isocèle cidessous. Les mesures sont dans la même unité.

Trouve la valeur de x telle que le périmètre du losange soit égal au double de celui du triangle.