Catégorie : programmes_conçus

Une animation pour comprendre les valeurs approchées…

Bonjour à tous!

Voilà un projet d’animation reprise à partir des dessins que je faisais en classe (hormis les « coucous,chuis là » qu’il m’arrive de rajouter sur les bonhommes pour égayer les ), je reprends l’écriture en décomposition décimale pour faire émerger la notion de valeur approchée.

Comprendre et faire émerger la « méthode » consistant à regarder le chiffre  » d’après » pour voir quelle valeur est la plus proche… Car cette méthode parfois lâchée auprès des élèves comme cela à ses limites.

Donc je passe souvent par la représentation d’un bonhomme qui fait des pas pour approcher la valeur attendue. Par exemple pour 123,23, le bonhomme va commencer par faire des pas de 100 (un seul), puis 2 pas de 10 … (on devine ainsi la décomposition décimale).

L’idée que les élèves puissent s’imaginer avancer pas à pas, revenir à une sorte d’approche par la proprioception.

blank

Mais quand il a fini de faire des pas de 1, on peut se poser la question s’il est plus proche de 120 (où il était arrivé en faisait des pas de 10) ou de 130 (s’il avait continué) ainsi on peut décider quelle valeur est la plus proche à la dizaine près. (balayant au passage que pour les valeurs approchées la précision n’est pas forcément à l’unité, au dixième près etc.)

Rien ne vaut une petite vidéo en action.

Voici le lien pour accéder à l’animation (c’est la première version).

https://www.mathix.org/anim_arrondir/

Vous avez aimé cet article ? Alors partagez-le avec vos amis en cliquant sur les boutons ci-dessous :

Licence Creative Commons

Bakel ou Touba : l’animation

Bonjour à toutes et tous!

Voici une petite animation que j’ai pu tester avec mes 6e (pas les deux, la 2e , je suis parti sur de l’extérieur en live)

L’idée de cette animation est de pouvoir asseoir visuellement les caractéristiques de la médiatrice en partant de l’énigme soulevée par la vidéo issue du film le Boulet (j’en parlais il y a longtemps : https://mathix.org/linux/archives/11925 ).

Pour rappel, la vidéo est là :

et voici l’animation qui va avec :

https://www.mathix.org/distance_lieu/

Quelques images :

Un clic gauche permet de tracer des points qui sont soit verts soit rouges en fonction de s’ils sont proches de Bakel ou Touba.

On peut ainsi voir la démarcation qui est la médiatrice du segment. On peut aussi faire apparaître le segment.

Je me suis marré à mettre une poule qui parle en fonction de sa position.

Vous avez aimé cet article ? Alors partagez-le avec vos amis en cliquant sur les boutons ci-dessous :

Licence Creative Commons

Un petit exerciseur pour travailler les arrondis

Bonjour à toutes et tous!

Force est de constater que c’est un écueil présent chez nos élèves, ils ne savent pas arrondir correctement.

J’ai donc concocté un petit exerciseur qu’on peut utiliser en autonomie ou en projection avec la classe pour ré-expliquer ce que c’est arrondir.

L’exerciseur se présente avec l’affichage d’une calculatrice et un résultat trouvé, la consigne nous indique la précision de l’arrondi.

blank

C’est donc l’utilisation de base.

J’ai ensuite ajouté un bouton « montrer l’encadrement« , on peut cliquer plusieurs fois dessus afin d’afficher petit à petit une représentation complète d’un axe gradué pour pouvoir trancher.

Pour y accéder :

https://www.mathix.org/arrondi/

Vous avez aimé cet article ? Alors partagez-le avec vos amis en cliquant sur les boutons ci-dessous :

Licence Creative Commons

Exerciseur sur les transformations passe en version 5

Bonjour à tous!

Voici la 5e version (qui a donc très rapidement évolué depuis samedi)

  • J’ai donc ajouté les translations et symétries axiales (horizontal et diagonal) !
  • D’autres figures sont possibles (comme le drapeau, le rectangle, un poisson ou un quadrilatère quelconque)

J’ai grossi le quadrillage pour l’impression.

blank
blank

C’est donc toujours à la même adresse !

https://www.mathix.org/transformation/

Vous avez aimé cet article ? Alors partagez-le avec vos amis en cliquant sur les boutons ci-dessous :

Licence Creative Commons

Exerciseur sur les homothéties (et accessoirement, rotation simple, translation et symétrie axiale et centrale) avec générateur de feuilles d’exercices

Bonjour à tous!

Après un contrôle un peu compliqué je me suis mis en tête de faire un exerciseur couplé à un générateur d’exercices sur des transformations sur un quadrillage.

Je suis plutôt content du résultat surtout pour les homothéties (qui était ma volonté première).

L’exerciseur propose des situations sur un quadrillage et on doit dessiner le rectangle image.

Il nous indique quand on a tort.

blank

et quand on a raison :

blank

Et puis si on en a marre on peut demander la solution.

blank

Si on veut un format papier, on peut également générer une feuille avec 4 situations générées aléatoirement sur le thème voulu (homothétie, symétrie centrale ou rotation) avec en 2e page la correction (dans mon idée j’imagine en recto-exo verso-corrigé).

Voici un pdf généré avec le programme sur l’homothétie :

Le programme est disponible là : https://www.mathix.org/transformation/

Vous avez aimé cet article ? Alors partagez-le avec vos amis en cliquant sur les boutons ci-dessous :

Licence Creative Commons

Le Number-stick ou le bâton à calcul

Bonjour à tous!

En pleine réflexion sur les tables de multiplications pour les savoirs fondamentaux, je me suis mis en tête de ritualiser sur quelques séances avec mes élèves le number-stick (ou bâton à calcul).

L’idée à travers cette activité est de manipuler les propriétés opératoires de la multiplication pour deviner/retrouver des tables comme par exemple celle de 12 ou 15.

J’ai décidé d’en faire une version propre à vidéoprojeter.

blank

On clique dessus pour faire apparaître le résultat.

Il existe plusieurs formes de ce bâton, une autre se rapproche plus d’une droite graduée, la mienne est plus issue d’un tableau de proportionnalité…

Comment imaginer une session ?

On fait deviner 3 cases simples (0, 1 et 10) :

blank

Ensuite, on a des choix qui ne dépendront que des élèves :

  • le 15×5 peut apparaître comme la moitié de 15×10 (c’est la case du milieu…pratique).
  • le 15×2 peut apparaître comme la double de 15×1
  • le 15×3 apparaîtra comme 15×2 augmenté de 15.
  • le 15×4 apparaîtra comme le double de 15×2 ou 15×3 augmenté de 15
  • Ensuite, soit on ajoute l »équivalent de 15×5 à toutes les valeurs trouvées.
  • 15×9 peut apparaître comme 15×10 diminué de 15

L’idée est de jouer avec ses propriétés, par contre elle ne permet pas de les apprendre réellement,mais de trouver quelques stratégies pour retrouver quelques produits non connus ou inaccessibles en terme de connaissances (je ne connais pas la table de 15 par exemple ! ).

La vidéoprojection permettra d’écrire autour du tableau les stratégies des élèves.

Cette idée vient du blog de Claire Lommé.

Le programme est disponible là : https://www.mathix.org/number-stick/index.html

Vous avez aimé cet article ? Alors partagez-le avec vos amis en cliquant sur les boutons ci-dessous :

Licence Creative Commons

Simulateur de règle à calculer

Bonjour à tous !

Bon, j’ai rapidement codé un petit simulateur de règle à calculer pour montrer comment on multipliait rapidement il y a un peu plus d’un demi-siècle.

L’idée sur laquelle je vais créer une parenthèse historique sur les fonctions, expliquer que l’outil des fonction a permis l’émergence de tableau de valeurs permettant la simplification de calculs !

Partir de la création du logarithme au XVII e siècle, durant cette fin du moyen-âge, on entre dans une phase de nécessité de simplifier les calculs (100 ans plus tard, STEVIN créera une proto-écriture décimale voir même scientifique qui donnera naissance à l’écriture décimale qui elle-même provoquera la nécessité de revoir les systèmes des poids et mesures,rien que ça!!)

La problématique derrière la création du logarithme ou plutôt de la fonction logarithme c’était de trouver un moyen de transformer une multiplication (complexe à faire à la main pour des grands nombres, ou en tout cas sources d’erreurs) en une addition. (Bürgi et Neper seront deux mathématiciens acteurs dans cette transformation, oui pour les plus rigoureux, une solution à base de trigonométrie existait mais se révélait complexe)

On part donc d’un constat on souhaite que : f(a×b)=f(a)+f(b)

Et via un tableau de valeurs on passe du monde de la multiplication (suite géométrique pour les plus rigoureux) vers l’addition (suite arithmétique) et on revient en arrière après le résultat.

Voici une création d’une fonction qui pourrait marcher :

Comme on a f(1×1)=f(1)+f(1) et f(1×1)=f(1) donc f(1)+f(1)=f(1) donc f(1)=0

f(a^b)=f(a×a×a×a..×a)=f(a)+f(a)+f(a)+f(a)+…f(a)+f(a)=b×f(a)

f(1)=f(b×1/b)=f(b)+f(1/b)=0 donc f(1/b)=-f(b)

f(4)=f(2×2)=f(2)+f(2)=2×f(2)

Si on pose f(2)=1, alors f(4)=2 (en fait là, on créé la fonction log2 )

f(6)=f(3×2)=f(3)+f(2)=f(3)+1

Ça c’est ce qu’on peut faire remarquer à des élèves de 3eme….

Avec cette table :

Nombres dont on veut le produit123456789
Résultat à ajouter et rechercher le résultat dans cette ligne0123

ici, si je veut multiplier 2 et 4, j’ajoute leurs images, 1 et 2 qui donne 3, en recherchant 3, j’obtiens 8

2×4 = 8

Doubler un nombre revient juste… à ajouter 1!

Quadrupler un nombre revient juste… à ajouter 2!

on a commencé à créer la table de log de 2!

On en vient à présenter rapidement la tables de logarithmes !

et … les règles à calculer!

blank

C’est là qu’intervient ma règle à calculer (alors j’en ai des vraies en bois, et même deux circulaires!

blank
blank

Mais pour expliquer le fonctionnement, rien de mieux qu’un simulateur! Alors là je n’ai mis que la partie en rapport avec la multiplication ou la division, j’ai ôté les racines carrés ou le calcul de circonférence d’un cercle! (d’ailleurs c’est drôle mais la formule est indiquée sur la règle chez moi)

https://www.mathix.org/regle_a_calculer/index.html

Vous avez aimé cet article ? Alors partagez-le avec vos amis en cliquant sur les boutons ci-dessous :

Licence Creative Commons

Glisse-nombre version 4 : Un seul pour les gouverner tous!

Bonjour à tous !

Bon, c’était quelque chose à laquelle je devais m’attacher à faire depuis … longtemps.

J’avais pas mal de versions du glisse nombre en fonction des requêtes que j’avais eu :

Sans virgule, entier seulement, pas de zéro….

A entretenir c’est juste galère!

Bref!

J’ai donc récrit le code en bonne partie et j’en ai profité pour alléger le code et le chargement (plus d’images de chaque chiffre).

Bref, en fonction de ce que l’on veut on appellera le glisse-nombre avec ce qu’on souhaite :

Par exemple, ici, j’ai la virgule de présente, c’est un tableau avec une partie décimale, et le nombre est déjà entré c’est 12.

https://www.mathix.org/glisse-nombre/?nb=12&avecoperation=1&entier=0&virgule=1

blank

ici, c’est un tableau sans partie décimale, et le nombre est déjà entré c’est 12.

https://www.mathix.org/glisse-nombre/?nb=12&avecoperation=1&entier=1

blank

Là, c’est sans les opérations, tableau décimal, pas de virgule et on fait apparaître les zéros.

https://www.mathix.org/glisse-nombre/?nb=12&avecoperation=0&entier=0&virgule=0&aveczero=1

blank

Bref, les variables que l’on peut ajouter en appelant l’url sont :

  • entier (vaut 1 ou 0 , pour vrai ou faux, si vrai le tableau sera celui des entiers, c’est faux par défaut)
  • avec operation (vaut 1 ou 0 , pour vrai ou faux, si vrai les opérations ×10 ×100 seront écrites, c’est vrai par défaut)
  • avec zero (vaut 1 ou 0 , pour vrai ou faux, si vrai les zéros utiles apparaîtront, c’est faux par défaut, par contre on peut les faire apparaître en cliquant sur la checkbox)
  • virgule (vaut 1 ou 0 , pour vrai ou faux, si vrai la virgule sera présente, c’est vrai par défaut)
  • nb (le nombre que l’on met dans le tableau sera déjà inscrit et prêt à bouger)

C’est toujours la même adresse :

https://www.mathix.org/glisse-nombre/

Vous avez aimé cet article ? Alors partagez-le avec vos amis en cliquant sur les boutons ci-dessous :

Licence Creative Commons

Application android MacamDoc passe en version 8 !

Bonjour à toutes et tous !

Voilà la version 8 de l’application android!

Déjà attention cette application reste optionnelle pour utiliser le service, on n’est donc pas obligé de l’installer pour utiliser le service ( mais elle apporte son lot de fonctionnalités très pratique!)

C’est quoi Macamdoc?

blank

C’est un outil qui permet avec un portable de vidéoprojeter une image prise par le portable.

en gros on lance l’ordinateur qui est relié au vidéoprojecteur sur : https://mathix.org/macamdoc puis on scanne le QRcode avec le portable.

Si on le fait sans application android, on se retrouve à ouvrir un url qui lance l’appareil photo en js et ça envoie la photo!

Mais l’application android permet de scanner aussi ce QRcode et apporte son lot de fonctionnalité bien pratique!

L’application Android

Depuis la version 4, l’application se met à jour, elle vous propose d’installer la mise à jour! Donc niveau suivi ce sera bien pratique! (Et on est à la 8e version car je n’ai pas pris le temps de faire une présentation des petites nouveautés)

Voici ce que cette application android macamdoc sait faire :

  • Permet de prendre des photos et les stocke dans une galerie
  • Permet de réafficher une photo précédemment prise (on peut choisir les photos à afficher sur l’ordinateur)
  • Permet de faire une rotation de 90° dans le sens horaire et anti-horaire.
  • Permet d’utiliser un mode rafale (on enchaîne les photos sans envoi sur l’ordinateur afin de stocker des photos prêtes à afficher)
  • On peut demander à vider la galerie des photos prises par l’application à la fin de l’utilisation de l’application
  • On peut demander à vider la galerie des photos prises par l’application en cliquant sur un bouton

voici une présentation en vidéo de l’outil!

Où est l’application ?

https://mathix.org/macamdoc/macamdocv8.apk

Vous avez aimé cet article ? Alors partagez-le avec vos amis en cliquant sur les boutons ci-dessous :

Licence Creative Commons

Abacus passe en version 3

Oui, le passage a été trop rapide entre les version 1 et 3… Pour la version 2, j’ai ajouté la correction via un bouton,et pour la version 3, j’ai ajouté une impression sur feuille d’exercices.

blank

Donc la grosse nouveauté reste l’impression sur feuille, on choisit le niveau, on clique sur Imprimer et hop, on a 6 exercices avec le corrigé ensuite.

Voici les exemples que l’on peut obtenir :

C’est toujours au même endroit :

https://www.mathix.org/abacus/

Vous avez aimé cet article ? Alors partagez-le avec vos amis en cliquant sur les boutons ci-dessous :

Licence Creative Commons