Catégorie : maths

Critère de divisibilité par 7

Résultat de recherche d'images pour "7""

C’est une actualité mathématique peu commune, un enfant de 12 ans, Chika Ofili, a su découvrir un critère de divisibilité par 7 assez simple.

Pour savoir si un nombre est divisible par 7, il suffit d’ajouter le nombre de dizaines (pas le chiffre, le nombre!) au produit des unités par 5. Si ce nouveau nombre (plus petit) est divisible par 7 alors le nombre de départ l’est aussi.

Yvan Monka en a fait un exemple sans toutefois le démontrer :

La démonstration est en fait assez simple en passant par les modulos.

Tout nombre peut se décomposer de la forme a \times 10 +b avec b<10.

a \times 10 +b = 0[7]

En multipliant par 5 :

\iff a \times 50 +5 \times b = 0[7]

Comme on sait que a \times 49 =0[7] car 49 est déjà un multiple de 7, on a

\iff a +5 \times b = 0[7]

a + 5 \times b correspond au 2e nombre dont il faut tester la divisibilité.

En tout cas, c’est un super critère de divisibilité ! 🙂

Vous avez aimé cet article ? Alors partagez-le avec vos amis en cliquant sur les boutons ci-dessous :

Licence Creative Commons

PBDUDU : Les DUDU sont à un concert

Bonsoir à tous!

blank

Voici un autre épisode des problèmes DUDU. Sans doute celui qui a été le plus compliqué à monter. Julien s’en est chargé, ouf ! 🙂 Et c’est celui, où j’ai eu honte, danser sur de la techno dans des toilettes!

Ici, la vidéo sert de justificatif aux élèves pour décrire une figure (soit un programme de construction, soit en nommant des figures, bref, c’est assez ouvert). C’est donc à destination des élèves de 6emes sur la géométrie (notamment figures usuelles).

Bon visionnage!!

Télécharger

Télécharger la pièce jointe

Vous avez aimé cet article ? Alors partagez-le avec vos amis en cliquant sur les boutons ci-dessous :

Licence Creative Commons

L’introduction de la lettre : la ligne brisée.

Salut à tous!

Bon je reviens d’une formation sur le calcul et la résolution de problème où j’ai pu revoir avec plaisir des camarades de l’université (super content de t’avoir revu Laorans). 🙂 Une belle journée!

blank

Allez, zoup ce soir, je m’essaye à proposer ma manière d’introduire la lettre au cycle 4 de manière efficace.

J’introduis en douceur cette notion sur du long terme (dès septembre pour commencer réellement en février), je ne l’intègre pas dans un « chapitre », disons que je commence la séquence officiellement au moment où tout est déjà fait.

Je pose, en quelques sortes, mes petites graines lors de l’activité mentale de début d’heure (que je fais à tous les cours).

L’idée est de partir sur la ligne brisée (un dessin rapide) et on demande la longueur de cette ligne.

Alors généralement mon premier dessin au tableau ressemble à celui-ci.

blank

En fait, je le fais à l’arrache mais du même type, je pense que de ne pas le préparer réellement, l’élève se dit que ça va être simple car sinon le prof l’aurait fait proprement… je vous jure que l’impression est différente.

La première fois, il y a un vrai blocage (lié au blanc) il y aura des contestataires, des gentils qui diront que c’est incomplet ou que c’est impossible ou ceux qui pensent trouver une solution proposent 13 ou 5+6+2.

Alors là, c’est le moment de les taquiner : « Ah bon? Rien ne vous gêne?« .

« Bah si, on connaît pas tout, c’est impossible en fait!« 

A vous de répondre que même la mémé du coin (moi j’aime bien la mémé de Loué, elle est rigolote) elle sait exprimer la longueur de cette ligne brisée, car elle la décrit simplement.

Si personne ne propose un truc satisfaisant pas grave, on imite la mémé (côté théâtral pour marquer les esprits, ça aide)

« Vind’iou , ça fait : un truc + 13 !! »

La réaction des élèves sera immédiate : « Ah d’accord, bah on savait pas qu’on pouvait etc… » . À ce moment là, il faut les autoriser à faire ce qu’ils veulent, leur dire d’oser… et proposer d’autre expression pour désigner l’espace vide « truc » « machin » « bidule »… puis passer à autre chose, notamment le cours que vous aviez prévu (sur une autre notion). On laisse digérer cette information.

Le cours d’après (on a laissé mariner cette découverte), on propose un autre dessin :

blank

Ici, on aura les erreurs du type : « 2 trucs +12 »

Des élèves devraient remarquer qu’il n’y a pas de codage donc de proposer une autre expression « truc + machin +12« . Un vrai débat peut s’installer, super riche.

Ensuite, d’autres dessins en vrac pour progresser sur la modélisation d’une longueur avec des inconnues. Il s’agit d’en faire plusieurs fois sur du long terme.

blank

On aura des réponses du type :

  • truc+4+truc+machin+6
  • truc+truc+machin+10
  • 2 trucs+ machin +10

Il suffira d ‘entourer que :
truc +truc = 2 trucs

blank

On teste leur imagination pour nommer des inconnues différentes, ça va coincer, comment faire autrement? La lettre comme outil rapide truc devient t, machin m, bidule b et donc il reste plein d’autres lettres.

blank

On peut également travailler sur la réduction de somme car on peut attendre deux types de réponses :

  • 2+3+x+x+x+y+y
  • 5+3x+2y
blank

La distributivité, on la reconnaît non?

Ici, on peut attendre 4(3x+5) ou 12x+20

blank

On peut également recontextualiser à posteriori sur les erreurs du type :

4x+2=6x

Bref, la ligne brisée permet de visualiser rapidement des manipulations avec le calcul littéral. Elle permet visuellement de déconstruire des erreurs et rapidement corriger le tir.

Toutefois, elle ne permet pas tout, comme on ne peut pas arriver à gérer la multiplication (sauf avec un scalaire), mais pour débuter sur le calcul littéral (dans le sens manipulation et modélisation) c’est sympa, non?

Vous avez aimé cet article ? Alors partagez-le avec vos amis en cliquant sur les boutons ci-dessous :

Licence Creative Commons